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Abstract 

Using Grad's approximation for the solution of the Boltzmann equation, we obtained the 
dependence of the heat conductivity on the temperature gradient for a stationary gas at 
rest. This dependence is non-analytical. 

INTRODUCTION 

The Fourier  law of heat  transport  

q =  - A 0 ( r )  VZ 

both in the kinetic theory of gases (Ferziger and Kaper  [1]) and in 
non-equilibrium statistical thermodynamics  (Zubarev [2]) is the result of 
the first approximation in the expansion of the distribution function in 
gradients of thermodynamical  parametersl  Several attempts have been 
made  to generalize the Fourier  law using ei ther the phenomenological  
approach or the Boltzmann equation and its models. 

Khonkin [3] has derived a small correction to the Chapman-En~kog  
value of the heat  conductivity under  the assumption of a constant tempera-  
ture gradient. Santos et al. [4] and Brey et al. [5] used the one-dimensional  
Bha tnaga r -Gros s -Krook  model  kinetic equation, and for constant pres- 
sure found no tempera ture  gradient -dependent  corrections to the heat  flux. 
Computer  simulation was also used to check this law [6] and has demon-  
strated its linearity in the one-dimensional  case (also for p = const). 

This note is an at tempt  to obtain a generalized Fourier  law with 
non-linear dependence  of the heat  flux on the tempera ture  gradient in the 
frame of Grad's  transport  equations. Grad [7] derived these equations from 
the Boltzmann equation using a th i r teen-moment  approximation of the 
distribution function. 
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THIRTEEN MOMENT EQUATIONS 

Consider the stationary gas at rest, a/Ot = O, u = O, so that the Burnett  
correction to the heat  flux is zero. The equation of continuity is an identity, 
and the equations of moment  and energy transport  are 

Op / O x  i = --  O0"ij/OX j (1) 

i ) q i / i ) X  i = 0 (2) 
The Grad relations for the viscous stress and the heat  flux are 

o-ij = - (8Ao/75pR)(Oqi/ax j + Oqj/axi) (3) 

qi = - A o a T / O x i -  (7Aotrij/5p) O T / a x j -  (2AoT/5p)  Otrij/ax j (4) 

Here  R is the gas constant and A o = a0(T) is the Chapman-Enskog  value 
of the heat  eonductivity. 

NON-LINEAR HEAT CONDUCTIVITY 

In order  to obtain explicit analytical relationships we consider fur ther  
the simple case of d-dimensional symmetry. From eqn. (2) we have in this 
case 

r X - d ( d / d r ) ( r d - l q )  

so that 

q = qo(r/ro) 1-d 

= 0  

(s) 
Inserting eqn. (5) into eqn. (3), we can define o-. Af ter  using these 
expressions for q and o- in eqns. (1) and (4) we obtain the following 
relations 

d(ln r ) / d ( l n  ~ ) = [ 2 s / 5 - K ( 1 - s ) ] / [ 1  + 2 ( n +  1 ) s / 5 - 7 s 2 / 5 ]  (6) 

d(ln Tr)/d(ln ~ ) = s ( l  +nK + 7 s / 5 ) / [ l  + 2(n + l ) s / 5 -  7s2/5] (7) 

Here  we have introduced the dimensionless quantities 

r = T /To ,  rr = P / P o ,  ~ = r /ro,  a = sign(q0) 

s = ~r/p = a(d - 1)rnsC:-aTr -2, K = qr /aoT  = a~2-dr-n-]  (8) 

and To, Po are chosen so that 

161%lA0(To) = 75p2ro R ,  A0(T0)T 0 = I%r r0  

n is the exponent in the  Chapman-Enskog  dependence  A o ( T ) =  
Ao(To)(T/To) n, which is true for power-like intermolecular  potentials. For 
more realistic potentials, such as Lennard-Jones ,  one should use the 
inherent  parameter:  T O = e / k ,  so that A0(T) is again a function of T / T  o. 
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In order  to define pressure and tempera ture  fields one should solve 
eqns. (6) and (7) with appropriate boundary conditions. However, to obtain 
the dependence  of the effective heat  conductivity h properly defined 

q = - h  d T / d r  

on a dimensionless tempera ture  gradient  y = d r / d ~  is a mat ter  of simple 
algebraic manipulation of eqns. (5)-(7) 

l = a / h 0 =  K[1 + 2(n + 1 ) s / 5 -  7 s Z / 5 ] / [ 2 s / 5 -  ~:(1 - s ) ]  

where  

s = - ( d  - l ) ~ ' - 2 ~ ' n ( Z d - 1 ) / ( d - 1 ) l l y [ 1 / ( d - 1 ) l y  

K = - -  r (1 -d-n) / (d-  1) I 1Y [ - 1/(d- 1)lT 

(9) 

(10) 

(11) 

R E S U L T S  A N D  D I S C U S S I O N  

For small 3' we can derive from eqns. (9)-(11) the first correction to the 
Fourier  law l - 1 

= 1 + (2/5)rr-Z[2r(Zncl+d-a)/ (c l -1) ly]  2/(cl-1) l 

--(n q- 7/2)7"n(id-1)/(d-1) ['y ]l/(d-1)T] 

This depends not only on the absolute value of the tempera ture  gradient, 
but on its sign as well. The dependence  on the gradient is moreover  
non-analytical in contrast  to that derived by Khonkin [3]. The reason seems 
to be that we did not assume the tempera ture  gradient to be constant. 

Generally, eqns. (9)-(11) give the implicit relationship between l and y 
for fixed r and ~-. Figure 1 shows the dependence  l (y)  for d = 3, n -- 1 
(Maxwell molecules), ~- -- r = 1. The dependence  is multi-valued, so Fig. 1 
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Fig. 1. H e a t  conduct iv i ty  versus  t e m p e r a t u r e  g rad ien t  (eqns.  (9)-(11)).  
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depicts  only a physically correct branch that passes  through 3' = 0, I = 1. 
This  branch begins  at the turnover point  (y  = - 0 . 1 2 4 ,  l ---- 1.939 for this 
specific case)  and ends  at 3' = + ~ ,  l = + 0. 

N o t e  that for d = 2 eqns.  (9 ) - (11 )  def ine  y ( l )  explicitly. 
For  the un id imens iona l  case (d  = 1) the first eqn. (8) immedia te ly  gives 

s = 0 and from eqn. (9) w e  see  that l -= 1. This  is why all o n e - d i m e n s i o n a l  
at tempts  to obtain a non- l inear  Fourier  law, e i ther numerical ly  or analyti- 
cally (e.g., T e n e n b a u m  et al. [6], Santos  et al. [4] and Brey et al. [5]) give no  
result.  
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